Cross-frequency coupling supports multi-item working memory in the human hippocampus.
نویسندگان
چکیده
Recent findings indicate that the hippocampus supports not only long-term memory encoding but also plays a role in working memory (WM) maintenance of multiple items; however, the neural mechanism underlying multi-item maintenance is still unclear. Theoretical work suggests that multiple items are being maintained by neural assemblies synchronized in the gamma frequency range (25-100 Hz) that are locked to consecutive phase ranges of oscillatory activity in the theta frequency range (4-8 Hz). Indeed, cross-frequency coupling of the amplitude of high-frequency activity to the phase of slower oscillations has been described both in animals and in humans, but has never been linked to a theoretical model of a cognitive process. Here we used intracranial EEG recordings in human epilepsy patients to test pivotal predictions from theoretical work. First, we show that simultaneous maintenance of multiple items in WM is accompanied by cross-frequency coupling of oscillatory activity in the hippocampus, which is recruited during multi-item WM. Second, maintenance of an increasing number of items is associated with modulation of beta/gamma amplitude with theta band activity of lower frequency, consistent with the idea that longer cycles are required for an increased number of representations by gamma cycles. This effect cannot be explained by a difference in theta or beta/gamma power. Third, we describe how the precision of cross-frequency coupling predicts individual WM performance. These data support the idea that working memory in humans depends on a neural code using phase information.
منابع مشابه
Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus.
The theta-gamma neural coding theory suggests that multiple items are represented in working memory (WM) by a superposition of gamma cycles on theta oscillations. To enable a stable, non-interfering representation of multiple items, such a theta-gamma neural code may be reflected by phase-phase coupling, i.e., a precise locking of gamma subcycles to specific theta phases. Recent data have indic...
متن کاملElectrophysiological signature of working and long-term memory interaction in the human hippocampus.
Recent findings indicate that the hippocampus is not only crucial for long-term memory (LTM) encoding, but plays a role for working memory (WM) as well. In particular, it has been shown that the hippocampus is important for WM maintenance of multiple items or associations between item features. Previous studies using intracranial electroencephalography recordings from the hippocampus of patient...
متن کاملGating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology
To explain gating of memory encoding, magnetoencephalography (MEG) was analyzed over multi-regional network of negative correlations between alpha band power during cue (cue-alpha) and gamma band power during item presentation (item-gamma) in Remember (R) and No-remember (NR) condition. Persistent homology with graph filtration on alpha-gamma correlation disclosed topological invariants to expl...
متن کاملTheta Oscillations at Encoding Mediate the Context-Dependent Nature of Human Episodic Memory
Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency cou...
متن کاملRhythmic Working Memory Activation in the Human Hippocampus.
Working memory (WM) maintenance is assumed to rely on a single sustained process throughout the entire maintenance period. This assumption, although fundamental, has never been tested. We used intracranial electroencephalography (EEG) recordings from the human hippocampus in two independent experiments to investigate the neural dynamics underlying WM maintenance. We observed periodic fluctuatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 7 شماره
صفحات -
تاریخ انتشار 2010